Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
J Med Chem ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451215

RESUMO

Novel cardiac troponin activators were identified using a high throughput cardiac myofibril ATPase assay and confirmed using a series of biochemical and biophysical assays. HTS hit 2 increased rat cardiomyocyte fractional shortening without increasing intracellular calcium concentrations, and the biological target of 1 and 2 was determined to be the cardiac thin filament. Subsequent optimization to increase solubility and remove PDE-3 inhibition led to the discovery of CK-963 and enabled pharmacological evaluation of cardiac troponin activation without the competing effects of PDE-3 inhibition. Rat echocardiography studies using CK-963 demonstrated concentration-dependent increases in cardiac fractional shortening up to 95%. Isothermal calorimetry studies confirmed a direct interaction between CK-963 and a cardiac troponin chimera with a dissociation constant of 11.5 ± 3.2 µM. These results provide evidence that direct activation of cardiac troponin without the confounding effects of PDE-3 inhibition may provide benefit for patients with cardiovascular conditions where contractility is reduced.

3.
Stem Cell Reports ; 18(1): 220-236, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36525964

RESUMO

Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.


Assuntos
Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Humanos , Miócitos Cardíacos/patologia , Sarcômeros , Células-Tronco Pluripotentes Induzidas/patologia , Conectina/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/patologia , Contração Miocárdica
4.
JACC Basic Transl Sci ; 7(10): 1021-1037, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36337919

RESUMO

Modulation of sarcomere contractility represents a new therapeutic opportunity for the treatment of heart failure by directly targeting the thick and thin filament proteins of the sarcomere to increase cardiac muscle contraction. This study compared the effect of 2 small molecules (M and T) that selectively alter myosin thick filament (M) or troponin thin filament (T) activity on overall cardiac muscle mechanics. This study revealed key differences related to the mechanism utilized by M and T to increase contractile force generation and suggests that targeting different proteins within the sarcomere may result in differentiating therapeutic profiles.

5.
Biochemistry ; 61(8): 741-748, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35349258

RESUMO

Cardiac troponin is a regulatory protein complex located on the sarcomere that regulates the engagement of myosin on actin filaments. Low-molecular weight modulators of troponin that bind allosterically with the calcium ion have the potential to improve cardiac contractility in patients with reduced cardiac function. Here we propose an approach to the rational design of troponin modulators through the combined use of solution nuclear magnetic resonance and isothermal titration calorimetry methods. In contrast to traditional approaches limited to calcium and activator-bound troponin structures, here we analyzed the structural and thermodynamic impact of an activator in the context of the troponin functional cycle. This led us to propose a rationale for developing an efficacious troponin activator.


Assuntos
Cálcio , Miocárdio , Actinas/metabolismo , Cálcio/metabolismo , Humanos , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Termodinâmica , Tropomiosina/metabolismo , Troponina/química
6.
Circ Heart Fail ; 15(3): e009195, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34743528

RESUMO

BACKGROUND: Current heart failure therapies unload the failing heart without targeting the underlying problem of reduced cardiac contractility. Traditional inotropes (ie, calcitropes) stimulate contractility via energetically costly augmentation of calcium cycling and worsen patient survival. A new class of agents-myotropes-activates the sarcomere directly, independent of calcium. We hypothesize that a novel myotrope TA1 increases contractility without the deleterious myocardial energetic impact of a calcitrope dobutamine. METHODS: We determined the effect of TA1 in bovine cardiac myofibrils and human cardiac microtissues, ex vivo in mouse cardiac fibers and in vivo in anesthetized normal rats. Effects of increasing concentrations of TA1 or dobutamine on contractile function, phosphocreatine and ATP concentrations, and ATP production were assessed by 31P nuclear magnetic resonance spectroscopy on isolated perfused rat hearts. RESULTS: TA1 increased the rate of myosin ATPase activity in isolated bovine myofibrils and calcium sensitivity in intact mouse papillary fibers. Contractility increased dose dependently in human cardiac microtissues and in vivo in rats as assessed by echocardiography. In isolated rat hearts, TA1 and dobutamine similarly increased the rate-pressure product. Dobutamine increased both developed pressure and heart rate accompanied by decreased phosphocreatine-to-ATP ratio and decreased free energy of ATP hydrolysis (ΔG~ATP) and elevated left ventricular end diastolic pressure. In contrast, the TA1 increased developed pressure without any effect on heart rate, left ventricular end diastolic pressure, phosphocreatine/ATP ratio, or ΔG~ATP. CONCLUSIONS: Novel myotrope TA1 increased myocardial contractility by sensitizing the sarcomere to calcium without impairing diastolic function or depleting the cardiac energy reserve. Since energetic depletion negatively correlates with long-term survival, myotropes may represent a superior alternative to traditional inotropes in heart failure management.


Assuntos
Dobutamina , Insuficiência Cardíaca , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Dobutamina/farmacologia , Metabolismo Energético , Insuficiência Cardíaca/metabolismo , Humanos , Camundongos , Contração Miocárdica , Miocárdio/metabolismo , Fosfocreatina/metabolismo , Ratos , Troponina/metabolismo
7.
J Med Chem ; 64(6): 3026-3034, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33703886

RESUMO

Troponin regulates the calcium-mediated activation of skeletal muscle. Muscle weakness in diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy occurs from diminished neuromuscular output. The first direct fast skeletal troponin activator, tirasemtiv, amplifies the response of muscle to neuromuscular input. Tirasemtiv binds selectively and strongly to fast skeletal troponin, slowing the rate of calcium release and sensitizing muscle to calcium. We report the solution NMR structure of tirasemtiv bound to a fast skeletal troponin C-troponin I chimera. The structure reveals that tirasemtiv binds in a hydrophobic pocket between the regulatory domain of troponin C and the switch region of troponin I, which overlaps with that of Anapoe in the X-ray structure of skeletal troponin. Multiple interactions stabilize the troponin C-troponin I interface, increase the affinity of troponin C for the switch region of fast skeletal troponin I, and drive the equilibrium toward the active state.


Assuntos
Imidazóis/farmacologia , Músculo Esquelético/efeitos dos fármacos , Pirazinas/farmacologia , Troponina C/metabolismo , Troponina I/metabolismo , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Imidazóis/química , Simulação de Acoplamento Molecular , Músculo Esquelético/fisiologia , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Pirazinas/química , Troponina C/química , Troponina I/química
8.
Nat Commun ; 8(1): 190, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28775348

RESUMO

Omecamtiv mecarbil is a selective, small-molecule activator of cardiac myosin that is being developed as a potential treatment for heart failure with reduced ejection fraction. Here we determine the crystal structure of cardiac myosin in the pre-powerstroke state, the most relevant state suggested by kinetic studies, both with (2.45 Å) and without (3.10 Å) omecamtiv mecarbil bound. Omecamtiv mecarbil does not change the motor mechanism nor does it influence myosin structure. Instead, omecamtiv mecarbil binds to an allosteric site that stabilizes the lever arm in a primed position resulting in accumulation of cardiac myosin in the primed state prior to onset of cardiac contraction, thus increasing the number of heads that can bind to the actin filament and undergo a powerstroke once the cardiac cycle starts. The mechanism of action of omecamtiv mecarbil also provides insights into uncovering how force is generated by molecular motors.Omecamtiv mecarbil (OM) is a cardiac myosin activator that is currently in clinical trials for heart failure treatment. Here, the authors give insights into its mode of action and present the crystal structure of OM bound to bovine cardiac myosin, which shows that OM stabilizes the pre-powerstroke state of myosin.


Assuntos
Miosinas Cardíacas/química , Ureia/análogos & derivados , Animais , Sítios de Ligação , Miosinas Cardíacas/efeitos dos fármacos , Bovinos , Cristalização , Conformação Proteica , Ureia/farmacologia
9.
EMBO Mol Med ; 9(4): 531-544, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28270449

RESUMO

Growth and differentiation factor (GDF) 11 is a member of the transforming growth factor ß superfamily recently identified as a potential therapeutic for age-related cardiac and skeletal muscle decrements, despite high homology to myostatin (Mstn), a potent negative regulator of muscle mass. Though several reports have refuted these data, the in vivo effects of GDF11 on skeletal muscle mass have not been addressed. Using in vitro myoblast culture assays, we first demonstrate that GDF11 and Mstn have similar activities/potencies on activating p-SMAD2/3 and induce comparable levels of differentiated myotube atrophy. We further demonstrate that adeno-associated virus-mediated systemic overexpression of GDF11 in C57BL/6 mice results in substantial atrophy of skeletal and cardiac muscle, inducing a cachexic phenotype not seen in mice expressing similar levels of Mstn. Greater cardiac expression of Tgfbr1 may explain this GDF11-specific cardiac phenotype. These data indicate that bioactive GDF11 at supraphysiological levels cause wasting of both skeletal and cardiac muscle. Rather than a therapeutic agent, GDF11 should be viewed as a potential deleterious biomarker in muscle wasting diseases.


Assuntos
Atrofia , Proteínas Morfogenéticas Ósseas/biossíntese , Fatores de Diferenciação de Crescimento/biossíntese , Músculo Estriado/patologia , Animais , Dependovirus/genética , Expressão Gênica , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/efeitos dos fármacos , Miostatina , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transdução Genética
10.
J Physiol ; 595(5): 1657-1670, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27869319

RESUMO

KEY POINTS: We report that the small molecule CK-2066260 selectively slows the off-rate of Ca2+ from fast skeletal muscle troponin, leading to increased myofibrillar Ca2+ sensitivity in fast skeletal muscle. Rodents dosed with CK-2066260 show increased hindlimb muscle force and power in response to submaximal rates of nerve stimulation in situ. CK-2066260 has no effect on free cytosolic [Ca2+ ] during contractions of isolated muscle fibres. We conclude that fast skeletal muscle troponin sensitizers constitute a potential therapy to address an unmet need of improving muscle function in conditions of weakness and premature muscle fatigue. ABSTRACT: Skeletal muscle dysfunction occurs in many diseases and can lead to muscle weakness and premature muscle fatigue. Here we show that the fast skeletal troponin activator, CK-2066260, counteracts muscle weakness by increasing troponin Ca2+ affinity, thereby increasing myofibrillar Ca2+ sensitivity. Exposure to CK-2066260 resulted in a concentration-dependent increase in the Ca2+ sensitivity of ATPase activity in isolated myofibrils and reconstituted hybrid sarcomeres containing fast skeletal muscle troponin C. Stopped-flow experiments revealed a ∼2.7-fold decrease in the Ca2+ off-rate of isolated troponin complexes in the presence of CK-2066260 (6 vs. 17 s-1 under control conditions). Isolated mouse flexor digitorum brevis fibres showed a rapidly developing, reversible and concentration-dependent force increase at submaximal stimulation frequencies. This force increase was not accompanied by any changes in the free cytosolic [Ca2+ ] or its kinetics. CK-2066260 induced a slowing of relaxation, which was markedly larger at 26°C than at 31°C and could be linked to the decreased Ca2+ off-rate of troponin C. Rats dosed with CK-2066260 showed increased hindlimb isometric and isokinetic force in response to submaximal rates of nerve stimulation in situ producing significantly higher absolute forces at low isokinetic velocities, whereas there was no difference in force at the highest velocities. Overall muscle power was increased and the findings are consistent with a lack of effect on crossbridge kinetics. In conclusion, CK-2066260 acts as a fast skeletal troponin activator that may be used to increase muscle force and power in conditions of muscle weakness.


Assuntos
Cálcio/fisiologia , Imidazóis/farmacologia , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Miofibrilas/efeitos dos fármacos , Pirazinas/farmacologia , Adenosina Trifosfatases/fisiologia , Animais , Bovinos , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiologia , Camundongos Endogâmicos C57BL , Fibras Musculares de Contração Rápida/fisiologia , Miofibrilas/fisiologia , Coelhos , Ratos Sprague-Dawley , Troponina C/fisiologia
11.
Proc Natl Acad Sci U S A ; 113(47): E7448-E7455, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27815532

RESUMO

Direct inhibition of smooth muscle myosin (SMM) is a potential means to treat hypercontractile smooth muscle diseases. The selective inhibitor CK-2018571 prevents strong binding to actin and promotes muscle relaxation in vitro and in vivo. The crystal structure of the SMM/drug complex reveals that CK-2018571 binds to a novel allosteric pocket that opens up during the "recovery stroke" transition necessary to reprime the motor. Trapped in an intermediate of this fast transition, SMM is inhibited with high selectivity compared with skeletal muscle myosin (IC50 = 9 nM and 11,300 nM, respectively), although all of the binding site residues are identical in these motors. This structure provides a starting point from which to design highly specific myosin modulators to treat several human diseases. It further illustrates the potential of targeting transition intermediates of molecular machines to develop exquisitely selective pharmacological agents.


Assuntos
Bibliotecas de Moléculas Pequenas/farmacologia , Miosinas de Músculo Liso/antagonistas & inibidores , Miosinas de Músculo Liso/química , Actinas/metabolismo , Sítio Alostérico , Animais , Cristalografia por Raios X , Cães , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Relaxamento Muscular , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Ligação Proteica/efeitos dos fármacos , Ratos
12.
J Pharmacol Exp Ther ; 353(1): 159-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25678535

RESUMO

Heart failure-mediated skeletal myopathy, which is characterized by muscle atrophy and muscle metabolism dysfunction, often manifests as dyspnea and limb muscle fatigue. We have previously demonstrated that increasing Ca(2+) sensitivity of the sarcomere by a small-molecule fast skeletal troponin activator improves skeletal muscle force and exercise performance in healthy rats and models of neuromuscular disease. The objective of this study was to investigate the effect of a novel fast skeletal troponin activator, CK-2127107 (2-aminoalkyl-5-N-heteroarylpyrimidine), on skeletal muscle function and exercise performance in rats exhibiting heart failure-mediated skeletal myopathy. Rats underwent a left anterior descending coronary artery ligation, resulting in myocardial infarction and a progressive decline in cardiac function [left anterior descending coronary artery heart failure (LAD-HF)]. Compared with sham-operated control rats, LAD-HF rat hindlimb and diaphragm muscles exhibited significant muscle atrophy. Fatigability was increased during repeated in situ isokinetic plantar flexor muscle contractions. CK-2127107 produced a leftward shift in the force-Ca(2+) relationship of skinned, single diaphragm, and extensor digitorum longus fibers. Exercise performance, which was assessed by rotarod running, was lower in vehicle-treated LAD-HF rats than in sham controls (116 ± 22 versus 193 ± 31 seconds, respectively; mean ± S.E.M.; P = 0.04). In the LAD-HF rats, a single oral dose of CK-2127107 (10 mg/kg p.o.) increased running time compared with vehicle treatment (283 ± 47 versus 116 ± 22 seconds; P = 0.0004). In summary, CK-2127107 substantially increases exercise performance in this heart failure model, suggesting that modulation of skeletal muscle function by a fast skeletal troponin activator may be a useful therapeutic in heart failure-associated exercise intolerance.


Assuntos
Insuficiência Cardíaca Sistólica/fisiopatologia , Músculo Esquelético/efeitos dos fármacos , Condicionamento Físico Animal , Pirimidinas/farmacologia , Troponina/metabolismo , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Bovinos , Feminino , Insuficiência Cardíaca Sistólica/complicações , Insuficiência Cardíaca Sistólica/metabolismo , Contração Muscular/efeitos dos fármacos , Fibras Musculares de Contração Rápida/efeitos dos fármacos , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/fisiopatologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Miofibrilas/efeitos dos fármacos , Miofibrilas/metabolismo , Coelhos , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod
13.
Nat Med ; 18(3): 452-5, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22344294

RESUMO

Limited neural input results in muscle weakness in neuromuscular disease because of a reduction in the density of muscle innervation, the rate of neuromuscular junction activation or the efficiency of synaptic transmission. We developed a small-molecule fast-skeletal-troponin activator, CK-2017357, as a means to increase muscle strength by amplifying the response of muscle when neural input is otherwise diminished secondary to neuromuscular disease. Binding selectively to the fast-skeletal-troponin complex, CK-2017357 slows the rate of calcium release from troponin C and sensitizes muscle to calcium. As a consequence, the force-calcium relationship of muscle fibers shifts leftwards, as does the force-frequency relationship of a nerve-muscle pair, so that CK-2017357 increases the production of muscle force in situ at sub-maximal nerve stimulation rates. Notably, we show that sensitization of the fast-skeletal-troponin complex to calcium improves muscle force and grip strength immediately after administration of single doses of CK-2017357 in a model of the neuromuscular disease myasthenia gravis. Troponin activation may provide a new therapeutic approach to improve physical activity in diseases where neuromuscular function is compromised.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Doenças Neuromusculares/metabolismo , Troponina C/agonistas , Troponina C/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Bovinos , Humanos , Imidazóis/química , Imidazóis/uso terapêutico , Terapia de Alvo Molecular , Contração Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/patologia , Miastenia Gravis/tratamento farmacológico , Miastenia Gravis/metabolismo , Miastenia Gravis/patologia , Miosinas/isolamento & purificação , Miosinas/metabolismo , Doenças Neuromusculares/tratamento farmacológico , Doenças Neuromusculares/patologia , Pirazinas/química , Pirazinas/uso terapêutico , Coelhos , Ratos , Troponina/metabolismo , Troponina/fisiologia
14.
Science ; 331(6023): 1439-43, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21415352

RESUMO

Decreased cardiac contractility is a central feature of systolic heart failure. Existing drugs increase cardiac contractility indirectly through signaling cascades but are limited by their mechanism-related adverse effects. To avoid these limitations, we previously developed omecamtiv mecarbil, a small-molecule, direct activator of cardiac myosin. Here, we show that it binds to the myosin catalytic domain and operates by an allosteric mechanism to increase the transition rate of myosin into the strongly actin-bound force-generating state. Paradoxically, it inhibits adenosine 5'-triphosphate turnover in the absence of actin, which suggests that it stabilizes an actin-bound conformation of myosin. In animal models, omecamtiv mecarbil increases cardiac function by increasing the duration of ejection without changing the rates of contraction. Cardiac myosin activation may provide a new therapeutic approach for systolic heart failure.


Assuntos
Miosinas Cardíacas/metabolismo , Insuficiência Cardíaca Sistólica/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ureia/análogos & derivados , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Regulação Alostérica , Animais , Sítios de Ligação , Cálcio/metabolismo , Miosinas Cardíacas/química , Débito Cardíaco/efeitos dos fármacos , Cães , Feminino , Insuficiência Cardíaca Sistólica/fisiopatologia , Isoproterenol/farmacologia , Masculino , Miócitos Cardíacos/fisiologia , Fosfatos/metabolismo , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Ureia/química , Ureia/metabolismo , Ureia/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos
15.
Biochemistry ; 48(40): 9503-15, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19719327

RESUMO

Structural changes in the mitotic arrest deficient protein 2 (Mad2) have been proposed to be essential for spindle checkpoint function. Current models for checkpoint activation propose that a C-Mad2-Mad1 core complex at unattached kinetochores is required for the structural activation through a process involving the interaction of two Mad2 conformers: a closed conformer bound to Mad1 or Cdc20 and an open conformer unbound to these ligands. To gain a molecular understanding of the mechanisms that accelerate the structural transition between the open and closed Mad2 conformations, we constructed a unique in vitro homogeneous Mad2 activity assay that specifically reports C-Mad2-Cdc20 formation. Using this assay we were are able to directly establish that (a) O-Mad2 transforms into a C-Mad2-Cdc20 complex >300-fold slower than unliganded C-Mad2, (b) a stable C-Mad2-Mad1 core complex catalyzes the transformation of O-Mad2 into a Cdc20-bound C-Mad2 complex, (c) a C-Mad2-Cdc20 complex can promote its own transformation of O-Mad2 into a Cdc20-bound C-Mad2 complex, and (d) the binding interaction between unliganded C-Mad2 and Cdc20 cannot be catalyzed by a C-Mad2-Mad1 core complex. Our data are consistent with the "Mad2 template" catalytic model in which a C-Mad2 template facilitates the binding of O-Mad2 to Cdc20 and supports a mechanism of C-Mad2-Cdc20 formation away from Mad1 containing kinetochores. Furthermore, our unique homogeneous Mad2 assay could be translated into a screening platform to identify small molecule drug-like compounds that directly modulate C-Mad2-Cdc20 formation.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Fuso Acromático/química , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Catálise , Proteínas Cdc20 , Polarização de Fluorescência , Humanos , Cinética , Ligantes , Proteínas Mad2 , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
16.
Biochemistry ; 47(11): 3576-85, 2008 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-18290633

RESUMO

KSP, also known as HsEg5, is a kinesin that plays an essential role in the formation of a bipolar mitotic spindle and is required for cell cycle progression through mitosis. Ispinesib is the first potent, highly specific small-molecule inhibitor of KSP tested for the treatment of human disease. This novel anticancer agent causes mitotic arrest and growth inhibition in several human tumor cell lines and is currently being tested in multiple phase II clinical trials. In this study we have used steady-state and pre-steady-state kinetic assays to define the mechanism of KSP inhibition by ispinesib. Our data show that ispinesib alters the ability of KSP to bind to microtubules and inhibits its movement by preventing the release of ADP without preventing the release of the KSP-ADP complex from the microtubule. This type of inhibition is consistent with the physiological effect of ispinesib on cells, which is to prevent KSP-driven mitotic spindle pole separation. A comparison of ispinesib to monastrol, another small-molecule inhibitor of KSP, reveals that both inhibitors share a common mode of inhibition.


Assuntos
Benzamidas/química , Cinesinas/antagonistas & inibidores , Cinesinas/química , Quinazolinas/química , Difosfato de Adenosina/antagonistas & inibidores , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Trifosfato de Adenosina/fisiologia , Regulação Alostérica/genética , Benzamidas/metabolismo , Ligação Competitiva/genética , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Químicos , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Quinazolinas/metabolismo
17.
Biochemistry ; 46(11): 3494-502, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17302440

RESUMO

The Wiskott-Aldrich syndrome protein (WASP) and neural WASP (N-WASP) are key players in regulating actin cytoskeleton via the Arp2/3 complex. It has been widely reported that the WASP proteins are activated by Rho family small GTPase Cdc42 and that Rac1 acts through SCAR/WAVE proteins. However, a systematic study of the specificity of different GTPases for different Arp2/3 activators has not been conducted. In this study, we have expressed, purified, and characterized completely soluble, highly active, and autoinhibited full-length human WASP and N-WASP from mammalian cells. We show a novel N-WASP activation by Rho family small GTPase Rac1. This GTPase exclusively stimulates N-WASP and has no effects on WASP. Rac1 is a significantly more potent N-WASP activator than Cdc42. In contrast, Cdc42 is a more effective activator of WASP than N-WASP. Lipid vesicles containing PIP2 significantly improve actin nucleation by the Arp2/3 complex and N-WASP in the presence of Rac1 or Cdc42. PIP2 vesicles have no effect on WASP activity alone. Moreover, the inhibition of WASP-stimulated actin nucleation in the presence of Cdc42 and PIP2 vesicles has been observed. We found that adaptor proteins Nck1 or Nck2 are the most potent WASP and N-WASP activators with distinct effects on the WASP family members. Our in vitro data demonstrates differential regulation of full-length WASP and N-WASP by cellular activators that highlights fundamental differences of response at the protein-protein level.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/fisiologia , Actinas/metabolismo , Proteínas Oncogênicas/fisiologia , Fosfatidilinositol 4,5-Difosfato/fisiologia , Proteína Neuronal da Síndrome de Wiskott-Aldrich/fisiologia , Proteína da Síndrome de Wiskott-Aldrich/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Humanos , Proteínas Recombinantes/biossíntese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...